Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(1): 102924, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430518

RESUMO

In addition to proteins, microRNAs, and lipids, plant-derived exosome-like nanovesicles (ENVs) are also enriched with host plant bioactives. Both curcumin and piperine are water insoluble, lack bioavailability, and are extracted by non-ecofriendly solvents. Herein, we present an eco-friendly protocol for co-isolating both curcumin and piperine in the form of hybrid ENVs. We describe steps for sample pre-processing, combined homogenization of plant materials, filtration, and differential centrifugation. We then detail procedures for polyethylene glycol-based fusion and precipitation of hybrid ENVs. For complete details on the use and execution of this protocol, please refer to Kumar et al.1.


Assuntos
Alcaloides , Curcuma , Curcumina , Piperidinas , Alcamidas Poli-Insaturadas , Polietilenoglicóis , Benzodioxóis
2.
ACS Omega ; 6(27): 17635-17641, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34278148

RESUMO

Plant-derived nanoparticles (PDNPs) are naturally occurring exosome-like nanovesicles derived from dietary plants containing key plant bioactives. Ginger-derived PDNPs have a therapeutic effect on alcohol-induced liver injury, inflammatory bowel disease, and colon cancer. PDNPs are conventionally purified by differential ultracentrifugation, a technique not amenable for scale up. We have recently developed a polyethylene glycol (PEG) 6000-based method for cost-effective purification of ginger PDNPs, with comparable efficiency to differential ultracentrifugation (Sci. Rep. 2020, 10 (1), 4456.). Herein, we report a 4-5-fold higher ginger PDNP recovery when PEG precipitation was carried out in low pH conditions (pH 4 and 5). Low pH-derived ginger PDNPs were smaller in size without an overt change in zeta potential. The spontaneous intracellular entry and protection against oxidative stress in A431 cells were similar between ginger PDNPs purified under low, neutral, and alkaline pH. Low-pH purified ginger PDNPs had higher levels of total polyphenolic content compared to PDNPs purified under neutral and alkaline pH. Recently, ginger PDNP-derived microRNAs have been shown to exhibit cross-kingdom regulation by targeting human, gut microbiome, and viral transcripts. Using qRT-PCR, we also verified the presence of miRNAs that were predicted to target SARS-CoV-2 in ginger PDNPs purified under low pH. Thus, we have developed a method to purify ginger PDNPs in high yields by using low-pH conditions without affecting the major bioactive contents of PDNPs.

3.
Toxicol Appl Pharmacol ; 414: 115425, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33516820

RESUMO

BACKGROUND: The current COVID-19 pandemic is caused by SARS-CoV-2 which belongs to coronaviridae family. Despite the global prevalence, there are currently no vaccines or drugs. Dietary plant derived exosome-like vesicles are known as edible nanoparticles (ENPs). ENPs are filled with microRNAs (miRNAs), in bioavailable form. Recently, cross-kingdom regulation of human transcripts by plant miRNAs have been demonstrated. However, ENP derived miRNAs targeting SARS-CoV-2 has not been described. STUDY DESIGN: Mature ENP-derived miRNA sequences were retrieved from small RNA sequencing datasets available in the literature. In silico target prediction was performed to identify miRNAs that could target SARS-CoV-2. ENPs were isolated from ginger and grapefruit plants and the expression of SARS-CoV-2 targeting miRNAs were confirmed by qRT-PCR. RESULTS: From a total of 260 ENP-derived miRNAs, we identified 22 miRNAs that could potentially target SARS-CoV-2 genome. 11 miRNAs showed absolute target specificity towards SARS-CoV-2 but not SARS-CoV. ENPs from soybean, ginger, hamimelon, grapefruit, tomato and pear possess multiple miRNAs targeting different regions within SARS-CoV-2. Interestingly, osa/cme miR-530b-5p specifically targeted the ribosomal slippage site between ORF1a and ORF1b. We validated the relative expression of six miRNAs (miR-5077, miR-6300, miR-156a, miR-169, miR-5059 and miR-166 m) in ginger and grapefruit ENPs by RT-PCR which showed differential enrichment of specific miRNAs in ginger and grapefruit ENPs. CONCLUSION: Since administration of ENPs leads to their accumulation into lung tissues in vivo, ENP derived miRNAs targeting SARS-CoV-2 genome has the potential to be developed as an alternative therapy.


Assuntos
Antivirais/farmacologia , Exossomos/química , MicroRNAs/farmacologia , Nanopartículas , Compostos Fitoquímicos/farmacologia , Plantas Comestíveis/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Antivirais/isolamento & purificação , Sequência de Bases , Sítios de Ligação , Citrus paradisi/química , Simulação por Computador , Genoma Viral , Humanos , MicroRNAs/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Plantas Comestíveis/genética , Reação em Cadeia da Polimerase em Tempo Real , Tratamento Farmacológico da COVID-19
4.
Sci Rep ; 10(1): 4456, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157137

RESUMO

Edible nanoparticles (ENPs) are nano-sized vesicles derived from edible plants. These ENPs are loaded with plant derived microRNAs, protein, lipids and phytochemicals. Recently, ginger derived ENPs was shown to prevent inflammatory bowel diseases and colon cancer, in vivo, highlighting their therapeutic potential. Conventionally, differential centrifugation with an ultra-centrifugation step is employed to purify these ENPs which imposes limitation on the cost-effectiveness of their purification. Herein, we developed polyethylene glycol-6000 (PEG6000) based ginger ENP purification (PEG-ENPs) method, which eliminates the need for expensive ultracentrifugation. Using different PEG6000 concentrations, we could recover between 60% to 90% of ENPs compared to ultracentrifugation method. PEG-ENPs exhibit near identical size and zeta potential similar to ultra-ENPs. The biochemical composition of PEG-ENPs, such as proteins, lipids, small RNAs and bioactive content is comparable to that of ultra-ENPs. In addition, similar to ultra-ENPs, PEG-ENPs are efficiently taken up by the murine macrophages and protects cells from hydrogen peroxide induced oxidative stress. Since PEG has been approved as food additive, the PEG method described here will provide a cost-effective alternative to purify ENPs, which can be directly used as a dietary supplement in therapeutic formulations.


Assuntos
Macrófagos/citologia , Nanopartículas/administração & dosagem , Nanopartículas/economia , Polietilenoglicóis/química , Rizoma/química , /química , Animais , Proliferação de Células , Células Cultivadas , Análise Custo-Benefício , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...